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1 Executive Summary

Practical scattering problems frequently involve thin metal objects with
open edges that can be modeled as perfectly conducting open surface tar-
gets. Examples include airborne vehicles with thin fins, horn antennas, and
high frequency circuits comprising thin strips of metallization on multi-layer
substrates. The standard integral equation formulations for obtaining fre-
quency domain solutions to such open surface scattering problems often lead
to linear systems of equations that are impractical to solve numerically – the
linear system is either too large to solve in a reasonable amount of time by
direct inversion or too ill conditioned to solve by iterative means.

The most commonly used integral equation for solving open surface scat-
tering problems is the electric field integral equation (EFIE). It is the only
integral equation that can be applied to both open and closed targets. The
only practical way to solve large scattering problems is using iterative solvers
in conjunction with operator decomposition methods such as the fast mul-
tipole method (FMM). Unfortunately, the EFIE is horribly ill conditioned
so the iteration count is uncontrollable and can be very large, thus negating
any advantage that may accrue from use of a fast method.

The objective of this program was to produce a new integral equation
that is inherently well conditioned and suitable for solving open surface scat-
tering problems. We achieved this goal by developing and implementing an
analytic preconditioner for the EFIE. We tested the efficacy of the new for-
mulation on simple test problems, finding that it stabilized and dramatically
improved iterative solver performance as compared to conventional numer-
ical preconditioning methods. For example, on the EletroMagnetic Code
Consortium (EMCC) triangle-circle target the analytically preconditioned
EFIE only required ∼30 iterations to achieve convergence as compared to
∼50000 for the standard EFIE with a conventional block diagonal precon-
ditioner. In stark contrast to the EFIE, the eigenvalue spectrum of the new
formulation has a distinctly second kind character. Consequently, the com-
puted source distribution (i.e., equivalent surface current) is also noticeably
smoother.

Our original plan for realizing a numerical implementation of the analyt-
ically preconditioned EFIE involved using a 2d extension to the 1d Poincaré-
Bertrand identity (PBI) in order to make the equation explicitly second kind.
In the process of numerically validating the 2d PBI, however, we found a
simpler algorithm that accurately evaluates the required double integral op-
erators in much less time. In contrast to previously implemented methods,
the spectrum of the discretized operator produced by this method faithfully
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reproduces that of the continuous operator even for high spatial frequency
eigenmodes.

One of the surprising outcomes of this program is the observation that,
for certain open surface PEC targets, the spectrum of the analytically pre-
conditioned EFIE (APEFIE) includes one or two zero eigenvalues. We en-
deavored to analytically derive the spectrum of the APEFIE on a PEC disk
to determine the source of the zero eigenvalues, but were unable to obtain
definitive results before the conclusion of the program. Nonetheless, our
report contains a summary of the analytical results we did obtain for open
surface scattering from canonical targets in the 2d and 3d scalar/acoustic
cases and the 3d vector/EM case.

2 Introduction

The electric field integral equation (EFIE) is an essential element in the
arsenal of tools for doing frequency domain electromagnetic scattering cal-
culations. It is the only integral equation that can be applied to both open
and closed surface PEC targets

The EFIE has a serious problem, however – it is notoriously ill con-
ditioned. When the system of linear equations generated by the EFIE is
solved by an iterative method, the iteration count cannot be controlled.
This compromises the effectiveness of acceleration methods such as the fast
multipole method (FMM) because such methods necessarily rely on iterative
solvers. Even when a direct solver (e.g., LU decomposition) can be used, the
combination of a seriously ill conditioned linear system and finite precision
computer arithmetic can degrade the accuracy of the computed solution.

The goal of this program is to find an analytic preconditioner for the
EFIE that

• converts the EFIE to a second kind integral operator,

• applies to both open and closed surface PEC targets, and

• is amenable to efficient numerical implementation.

Our approach is based on two observations.
The first is the EFIE preconditioning method described in [1]. When

applied to closed surface scattering problems, this analytic preconditioner
is guaranteed to convert the EFIE to a second kind integral equation. The
computational cost of this approach is predictable and reasonable. However,

2



our original implementation of this approach did not produce a second kind
integral equation when applied to an open surface scatterer.

The second observation is a 2d extension [2][3] of a well established, but
not so widely known, 1d integral identity called the Poincaré-Bertrand iden-
tity (PBI) [4]. Analytic preconditioners for the 2d and 3d scalar analogs of
the EFIE produce double integral operators that exhibit second kind behav-
ior. However, the second kind behavior may be lost as a result of numerical
discretization. The 1d and 2d Poincaré-Bertrand identities provide a way
to write these double integral operators in an explicitly second kind form,
i.e., as the sum of a constant term and a compact operator, which makes
it trivial to retain second kind behavior in the numerical implementation.
Furthermore, the Poincaré-Bertrand identities can be used both with open
and closed surface formulations.

Work on the program was divided into three tasks:

1. Numerically validate the 2d PBI on simple 2d surfaces.

2. Use the 2d PBI to realize an explicitly second kind analytically pre-
conditioned EFIE (APEFIE) for closed surface PEC targets.

3. Use the 2d PBI to realize an explicitly second kind APEFIE for open
surface PEC targets.

We completed all three tasks and achieved the stated objectives. In the
course of our work, however, we found a faster, more robust alternative to
the 2d PBI for achieving second kind behavior in a numerical realization of
the APEFIE. The alternative method involves overdiscretizing the double
integral evaluations at intermediate sample points. An intermediate sample
point density about double that of the field/source point discretization was
generally sufficient to avoid compromising accuracy. We used this alternative
method in our numerical demonstrations.

Notes:

• EFIE ill conditioning has a local cause and a global cause. This pro-
gram is only concerned with addressing the local cause. It does not
directly address resonances, whether spurious or physical, which fall
into the global cause category.

• The primary motivation for developing a well conditioned counterpart
to the EFIE is to facilitate the use of fast methods such as the FMM
for solving large scattering problems involving open PEC surfaces.
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The goal of this program was limited to finding a suitable integral
equation formulation and demonstrating its potential on small scale,
open surface scattering problems. Since the underlying cause of the
problem is a local one, the methods reported here should be just as
effective on large scale scattering problems as they were for the small
test targets investigated here.

We believe that this new formulation can have far-reaching impact be-
cause it removes a major impediment to the practical use of fast methods
for solving a wide variety of important scattering problems. The types
of problems that would be affected range from predicting the radar cross
section (RCS) of airborne vehicles with thin fins or antennas to modeling
microwave circuits comprising thin strips of metallization on multi-layer sub-
strates. Note that the new formulation also applies to 3d scalar scattering so
it can be used to improve solution methods for acoustic scattering problems
as well.

3 Poincaré-Bertrand Identity

The Poincaré-Bertrand identities (PBI) [3][4] provide a means to explicitly
second kind expressions for the double integral operators that arise when
analytic preconditioning methods are applied to the 2d and 3d scalar scat-
tering analogs of the EFIE. Although we ended up not using these identities
in our formulation of a well conditioned EFIE for open and closed surfaces,
a brief discussion of the relevant identities is include here for completeness.

3.1 2d scalar

The Poincaré-Bertrand identity is commonly stated as1

−
∫ 1

−1
dx′

φ1 (x′)
x− x′

−
∫ 1

−1
dx′′

φ2 (x′′)
x′ − x′′

ψ
(
x′′

)
= −π2φ1 (x)φ2 (x)ψ (x) (1)

+−
∫ 1

−1
dx′′φ2

(
x′′

)
−
∫ 1

−1
dx′

φ1 (x′)
(x− x′) (x′ − x′′)

ψ
(
x′′

)
where −

∫
means that the integral is a Cauchy principal value integral. Equa-

tion (1) expresses the 1d PBI on the open interval (−1, 1). A more general
1The redundant function ψ (x′′) is given separately from φ2 (x′′) for later notational

convenience. It will correspond to the unknown source function.
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form of the 1d PBI is

−
∫
C
dl′φ1

(
x′

) ∂G (x,x′)
dl′

−
∫
C
dl′′φ2

(
x′′

) ∂G (x′,x′′)
dl′′

ψ
(
x′′

)
=

− 1
4
φ1 (x)φ2 (x)ψ (x) (2)

+−
∫
C
dl′′φ2

(
x′′

)
−
∫
C
dl′φ1

(
x′

) ∂G (x,x′)
dl′

∂G (x′,x′′)
dl′′

ψ
(
x′′

)
where the integrals are now over arc length on an arbitrary smooth curve
C, the derivatives are tangential (to C) derivatives, and G is the 2d Laplace
or Helmholtz kernel, i.e.,

G
(
x,x′

)
= − 1

2π
log

(∣∣x− x′
∣∣) or G

(
x,x′

)
=
i

4
H

(1)
0

(∣∣x− x′
∣∣) , (3)

respectively.
The 2d analogs of the EFIE are a first kind integral equation

ψinc (x) =
∫
C
dl′G

(
x,x′

) dψ (x′)
dn′

for TM polarization (4)

and a hypersingular integral equation

dψinc (x)
dn

= − d

dn

∫
C
dl′
∂G (x,x′)

∂n′
ψ

(
x′

)
for TE polarization (5)

where the derivatives are normal (to C) derivatives.
If curve C is closed, one obtains a second kind integral equation from (4)

or (5) by pre- or post-conditioning it by the integral operator of the other
equation [5][6]. The resulting composite operator can be manipulated into a
sum of terms involving compact operators, plus a term whose form matches
that of the LHS of (2) with φ1 (x′) = φ2 (x′′) = 1. This term has the spectral
characteristics of a second kind operator. Using (2), we can write it in an
explicitly second kind form.

If C is an open curve, one can apply the same procedure to obtain second
kind integral equations, provided additional factors containing the appro-
priate endpoint singularity behavior are included in each integral operator
[7][8]. In the case of the open interval (−1, 1), this amounts to letting

φ1

(
x′

)
=

(
1−

(
x′

)2
)±1/2

and φ2

(
x′′

)
=

(
1−

(
x′′

)2
)∓1/2

. (6)

Since φ1 (x)φ2 (x) = 1 in both cases, the transformation of (2) again pro-
duces an explicitly second kind integral operator.

Notes:
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• Having an explicitly second kind EFIE formulation for 2d scattering
is helpful because it makes solution methods based on patch-based
discretizations practical, but it is not essential because in 2d an entire-
domain discretization based on arc length is often available.

• The form of the 1d PBI suggests a possible means to obtain a second
kind integral equation for a target with both open and closed charac-
teristics. Consider, for example, a circle with a thin fin attached. It
may be possible to obtain a second kind formulation for this geometry
by choosing φ2 (x) to be a function that incorporates the appropriate
endpoint singularity behavior at the open end of the fin and smoothly
approaches unity at the other end of the fin, and by choosing φ1 (x)
to incorporate the reciprocal behavior.

• The PBI is needed for computational purposes only when the field
and source points are in close proximity. Most interactions are far
interactions and they can be computed using standard discretizations
of the integral operators or using fast methods such as the FMM.

3.2 3d scalar

We can write the 2d extension to the 1d PBI [2][3] as∫
S
ds′φ1

(
x′

)
∇′G

(
x,x′

)
·
∫
S
ds′′φ2

(
x′′

)
∇′G

(
x′,x′′

)
ψ

(
x′′

)
=

1
4
φ1 (x)φ2 (x)ψ (x) +∫

S
ds′′φ2

(
x′′

) ∫
S
ds′φ1

(
x′

)
∇′G

(
x,x′

)
· ∇′G

(
x′,x′′

)
ψ

(
x′′

)
(7)

where the integrations are over a sufficiently smooth surface S and ∇′G de-
notes the gradient of the 3d Laplace kernel with respect to x′. The extension
of (7) to the case of the 3d Helmholtz kernel is trivial.

The equations for scalar scattering from a surface S under Dirichlet and
Neumann boundary conditions are analogous to (4) and (5), respectively.
The procedures for pre- or post-conditioning these equations to obtain sec-
ond kind integral equations are also analogous to those of the 2d scalar
case.

6



4 Analytically preconditioning the EFIE

The electric field integral equation (EFIE) for a PEC is

−n̂ (x)×Einc (x) =

TJ︷ ︸︸ ︷
n̂ (x)×

∫
S
ds′

{
ikG

(
x,x′

)
J

(
x′

)
+
i

k
∇

(
∇G

(
x,x′

)
· J

(
x′

))}
,

(8)

where n̂ (x) is the unit normal at the field point x, Einc (x) is the incident
electric field, k =

√
µεω is the propagation wavenumber in the interaction

medium, G (x,x′) is the Helmholtz kernel, and J (x′) is the equivalent sur-
face source distribution (or current). The current is related to the surface
component of the magnetic field H by J = Zn̂×H, where Z =

√
µ/ε is the

wave impedance in the interaction medium.
The ill conditioned nature of the EFIE is a direct result of the near field

behavior of the EFIE integral operator, which we can write as the sum of
singular and hypersingular component operators:

TS = ikn̂ (x)×
∫
S
ds′ G

(
x,x′

)
(9)

TH =
i

k
n̂ (x)×∇

∫
S
ds′ ∇G

(
x,x′

)
· (10)

The singular component TS is a smoothing operator – eigenvalues of TS

corresponding to high spatial frequency eigenmodes tend toward the origin.
The hypersingular component TH is a differential operator – eigenvalues of
TH corresponding to high spatial frequency eigenmodes tend toward infinity.
Note that TS is the 3d EM analog of the TM operator on the RHS of (4)
and TH is the 3d EM analog of the TE operator in (5). The EFIE combines
both sources of ill conditioning into a single integral equation, adding to
the challenge of finding a suitable analytic preconditioner for open surface
targets.

4.1 Original analytic preconditioner

As described in [1], the ideal preconditioner for the EFIE for closed surface
targets is the EFIE operator itself. In other words, T 2 ≡ TT is a second
kind operator. At first glance, this may seem surprising since the expanded
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product operator contains a double hypersingular term:

T 2J =
(
TS + TH

) (
TS + TH

)
J

=
(
TSTS + THTS + TSTH + THTH

)
J. (11)

However, integration by parts reveals that the double hypersingular term
actually vanishes

THTHJ = (n̂×∇)
∫
S
ds′ ∇G ·

(
n̂′ ×∇′) ∫

S
ds′′ ∇′G · J′′

= (n̂×∇)
∫
S
ds′ G∇′ ·

(
n̂′ ×∇′)︸ ︷︷ ︸
= 0

∫
S
ds′′ ∇′G · J′′ = 0, (12)

which leaves

T 2J =
(
THTS + TSTH + TSTS

)
J (13)

The combination of the first two terms on the RHS of (13) is a second
kind operator. The last term is obviously compact. With some further
manipulation (see [1]), we can re-write (13) as

T 2J =

Tα︷ ︸︸ ︷
n̂×

∫
S
ds′ ∇G

(
x,x′

) TT︷ ︸︸ ︷∫
S
ds′′

(
n̂′ ×∇′G

(
x′,x′′

))
·J

(
x′′

)

+

Tβ︷ ︸︸ ︷
n̂×

∫
S
ds′ n̂′ ×∇′G

(
x,x′

) TL︷ ︸︸ ︷∫
S
ds′′ ∇′G

(
x′,x′′

)
·J

(
x′′

)

−k2

TS/(ik)︷ ︸︸ ︷
n̂×

∫
S
ds′ G

(
x,x′

) TS/(ik)︷ ︸︸ ︷
n̂′ ×

∫
S
ds′′ G

(
x′,x′′

)
J

(
x′′

)
, (14)

which has the appealing property that the kernel of each integral operator
involves no more than one gradient on the Green function.

The surface current J can be decomposed2 into two parts, a transverse
part JT that has no surface divergence (∇ · JT = 0) and a longitudinal
component JL that has no surface curl ((n̂×∇) · JL = 0). One can show

2According to the Helmholtz-Hodge decomposition theorem [9], a surface vector field
can be decomposed into a curl-free component, a divergence-free component, and a har-
monic remainder (which is both curl- and divergence-free). When it exists, the harmonic
component of J needs to be treated separately.
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analytically [1] that THTS (or TαT T ) is a second kind operator for JT

and is compact for JL. Conversely, TSTH (or T βTL) is a second kind
operator for JL and is compact for JT . Therefore the sum THTS + TSTH

(or TαT T +T βTL) is a second kind operator for the full current J = JT +JL.

4.2 Eigenvalues and resonances

The magnetic field integral equation (MFIE),

n̂ (x)×Hinc (x) =
1
2
J (x)−n̂ (x)×∇

∫
S
ds′ G

(
x,x′

)
︸ ︷︷ ︸

K

J
(
x′

)
, (15)

only applies to closed surface targets.
If S is a closed surface, the T 2 operator obeys the following identity from

Roach [10]:

T 2 = −1
4

+K2 =
(
−1

2
+K

) (
1
2

+K

)
. (16)

Since K is compact, the Roach identity confirms that T 2 is a second kind
operator whose eigenvalues accumulate at −1

4 .
The factored representation of T 2 in (16) shows that resonances of 1

2 +K
and −1

2 +K are also resonances of T 2. So even though preconditioning both
sides of (8) turns it into a second kind integral equation, it does not, by
itself, always produce a well conditioned integral equation. There are a
number of simple and effective ways (e.g., see [1][11]) to eliminate these
spurious resonances without compromising the effectiveness of the analytic
preconditioner.

Part of the solution to avoiding spurious resonances is to use a different
wavenumber for the preconditioning operator. For example, if k2 = k is
the wavenumber of the scattering problem, one can use k1 = ik for the
preconditioning operator. As we saw in our previous work [1], the resultant
integral operator T (k1)T (k2) is no longer a single second kind operator,
but rather the sum of two second kind operators with different asymptotic
collection point, one at + i

2 and another at − i
2 . In the course of this program

we realized that a simple modification to the preconditioning procedure puts
both asymptotic collection points back at −1

4 .
The sum of T (k2) preconditioned by αSTS (k1) and T (k2) precondi-

tioned by αHTH (k1) , where αS and αH are arbitrary coefficients, can be
rewritten as

αH
k2

k1
Tα (k1)T T (k2) +αS

k1

k2
T β (k1)TL (k2)−αSTS (k1)TS (k2) . (17)
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Setting αS = αH = 1 produces the same result as before. On the other
hand, setting

αH =
k1

k2
and αS =

k2

k1

puts both eigenvalue collections points at −1
4 , independently of the values of

k1 and k2. Having a single asymptotic eigenvalue collection point improves
iterative solver convergence.

5 Numerical validation of 2d PBI

The 2d Poincaré-Bertrand identity (PBI) can be written as∫
S
ds′ φ1

(
x′

) (
n̂×∇G

(
x,x′

))
·
∫
S
ds′′ φ2

(
x′′

) (
n̂′′ ×∇′′G

(
x′,x′′

))
ψ

(
x′′

)
=

1
4
φ1 (x)φ2 (x)ψ (x) + (18)∫

S
ds′′ φ2

(
x′′

)
ψ

(
x′′

) ∫
S
ds′ φ1

(
x′

) (
n̂×∇G

(
x,x′

))
·
(
n̂′′ ×∇′′G

(
x′,x′′

))
where S is a smooth surface (open or closed), φ1, φ2, and ψ are general
smooth functions, and G is the 3d Laplace kernel (i.e., G (x,x′) = 1/ (4πr),
where r ≡ |x− x′|). The identity expresses the fact that the two integral
operators

H1 ≡
∫
S
ds′ φ1

(
x′

) (
n̂×∇G

(
x,x′

))
· (19a)

H2 ≡
∫
S
ds′′ φ2

(
x′′

) (
n̂′′ ×∇′′G

(
x′,x′′

))
(19b)

do not commute. Instead, the commutator is

[H1,H2] =
1
4
φ1 (x)φ2 (x) .

The identity also holds for the Helmholtz kernel (i.e., G (x,x′) = eikr/ (4πr))
since the Helmholtz kernel can be decomposed into the sum of a singular
(Laplace) part and a regular part and for the regular part the operators do
commute.

The first objective of this contract was to numerically demonstrate the
validity of this identity in the restricted case where φ1 = φ2 = 1 and G (x,x′)
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is the 3d Laplace kernel, i.e.,∫
S
ds′

(
n̂×∇G

(
x,x′

))
·
∫
S
ds′′

(
n̂′′ ×∇′′G

(
x′,x′′

))
ψ

(
x′′

)
=

1
4
ψ (x) +∫

S
ds′′ ψ

(
x′′

) ∫
S
ds′

(
n̂×∇G

(
x,x′

))
·
(
n̂′′ ×∇′′G

(
x′,x′′

))
,

or

IDHT ψ (x) =
1
4
ψ (x) + IPBI ψ (x) ,

where IDHT and IPBI represent the double integral operators, defined by

IDHT ψ (x) ≡
∫
S
ds′

(
n̂×∇G

(
x,x′

))
·
∫
S
ds′′

(
n̂′′ ×∇′′G

(
x′,x′′

))
ψ

(
x′′

)
(20a)

IPBI ψ (x) ≡
∫
S
ds′′ ψ

(
x′′

) ∫
S
ds′

(
n̂×∇G

(
x,x′

))
·
(
n̂′′ ×∇′′G

(
x′,x′′

))
.

(20b)

We developed prototype code in C++ that evaluates each of these terms
and demonstrates the validity of this identity on several types of surface
patches.

5.1 Integral operator properties

We can consider the validation procedure as involving the evaluation of four
different integrals:

I1 (x) ≡
∫
S
ds′

(
n̂×∇G

(
x,x′

))
· f

(
x′

)
I2

(
x′

)
≡

∫
S
ds′′

(
n̂′′ ×∇′′G

(
x′,x′′

))
f

(
x′′

)
I3 (x) ≡

∫
S
ds′′ I4

(
x,x′′

)
f

(
x′′

)
I4

(
x,x′′

)
≡

∫
S
ds′

(
n̂×∇G

(
x,x′

))
·
(
n̂′′ ×∇′′G

(
x′,x′′

))
where f (x′′) is an arbitrary scalar function (which one could later use to
represent the unknown source distribution) and f (x′) is an arbitrary surface
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vector function. The combination of I1 and I2 gives IDHT and the combi-
nation of I3 and I4 gives IPBI . The four integrals involve different types
of kernel singularities and must be handled carefully to achieve accurate,
numerically realizable results.

Our prototype code evaluates the double Hilbert transform integral IDHT f (x′′)
by multiplying the separate matrix representations (i.e., discretized versions)
of I1 (x) and I2 (x′). By contrast, we evaluate the double integral IPBI f (x′′)
“all at once” using numerical evaluations of the inner integral I4 (x,x′′) at
each quadrature point of the outer integral I3 (x). The “all at once” in-
tegration procedure is more time consuming, but is also more reliable for
computing accurate results.

We have observed the following properties:

• The kernels of I1 and I2 have singularities that scale as cos (θ) r−2

(where r is the distance from the source point to the field point and
θ measures the angle around the field point) so they are integrable,
but only in the principal value sense. This requires some care. For
example, one can rewrite each integral using integration by parts as
the sum of a edge integral of a regular function and a surface integral
of a function whose kernel singularity is no worse than r−1.

• I1 (x) is a smooth function of x for x ∈ S. For x near an open edge of
S, I1 (x) varies as log (r) where r is the distance from x to the open
edge. I2 (x′) behaves similarly.

• The integrand of I4 (x,x′′) is singular at x and x′′. Each singularity
scales like cos (θ) r−2, where r is the distance from the source point to
the singular point and θ measures the angle around the singular point.
As with I1 and I2, they are integrable singularities in the principal
value sense because of the angular factor. When x and x′′ are close
together special care must be taken to evaluate the integral accurately
because the integrand varies rapidly between positive and negative
infinities. We have investigated several approaches to evaluating this
integral, including some that involve analytic singularity subtraction.
They all work, but with varying degrees of efficiency and robustness.

• On a flat surface, I4 (x,x′′) is a smooth function of x′′ for a given x,
even at x = x′′. If S is curved, then I4 (x,x′′) has a log (r) singularity,
where r ≡ |x− x′′|. For x′′ near an open edge of S, I4 (x,x′′) varies
as log (r) where r is the distance from x′′ to the open edge.
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• In one sense I3 (x) is the easiest of the integrals to evaluate since the
singularities of its kernel I4 (x,x′′) are no worse that log (r). How-
ever, it can be the most time consuming to evaluate because at each
quadrature point one needs an accurate evaluation of I4 (x,x′′) .

5.2 Numerical results

Our prototype code can evaluate IDHT f (x) and IPBI f (x) with adjustable
accuracy on a variety of patch types with a variety of testing functions. The
computation takes a ‘digits’ parameter, which specifies the accuracy goal (in
number of digits) of the adaptive integration routines. For IDHT f (x), there
is also an ‘order’ parameter. It specifies the number of x′ points at which
I2 (x′) is evaluated, which is also the number of testing functions f (x′) used
to compute local corrections for I1 (x).

The testing functions we chose are products of polynomials in the surface
parameterization u1 and u2. The tables below are organized such that the
entry in the mth row and nth column corresponds to the scalar function

f
(
x′′

)
= f (u1, u2) = Pm (u1)Pn (u2)

where Pn (u) is the nth Legendre polynomial.
For easy comparison, the tables show computed values of

(
IDHT − 1

4

)
f (x)

and IPBI f (x).
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5.2.1 Square patch

Tables 1 and 2 give
(
IDHT − 1

4

)
f (x) and Tables 3 and 4 give IPBI f (x)

on a square patch at x = (0.25, 0.35). Table 5 gives the difference between(
IDHT − 1

4

)
f (x) (from Table 2) and IPBI f (x) (from Table 4).

Table 1:
(
IDHT − 1

4

)
f (x) for a square patch (digits=10 and order=8)

m/n 0 1 2 3 4
0 -0.10514744 0.02500997 -0.00878341 -0.00051174 -0.01157399
1 0.03965702 -0.01959232 -0.00205752 0.00387275 0.00661861
2 -0.02384387 0.00801955 0.01640285 -0.00927404 0.00050915
3 0.00873452 -0.00266640 -0.01145919 0.00844339 -0.00138054
4 -0.01365415 0.00459554 0.00706801 -0.00530567 0.00024560

Table 2:
(
IDHT − 1

4

)
f (x) for a square patch (digits=10 and order=10)

m/n 0 1 2 3 4
0 -0.10517396 0.02501531 -0.00882176 -0.00052061 -0.01164151
1 0.03968532 -0.01959947 -0.00199779 0.00391992 0.00678708
2 -0.02383721 0.00800491 0.01638150 -0.00929691 0.00045280
3 0.00878461 -0.00267033 -0.01135429 0.00839380 -0.00129506
4 -0.01365726 0.00464442 0.00699183 -0.00547012 0.00012730

Table 3: IPBI f (x) for a square patch (digits=6)
m/n 0 1 2 3 4

0 -0.10515237 0.02500882 -0.00879625 -0.00052500 -0.01162961
1 0.03967821 -0.01960292 -0.00200786 0.00388514 0.00675064
2 -0.02385828 0.00801653 0.01636798 -0.00930678 0.00043937
3 0.00879925 -0.00272262 -0.01136585 0.00844514 -0.00131449
4 -0.01368469 0.00462558 0.00704841 -0.00545916 0.00016687
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Table 4: IPBI f (x) for a square patch (digits=8)
m/n 0 1 2 3 4

0 -0.10515263 0.02500873 -0.00879683 -0.00052512 -0.01163036
1 0.03967805 -0.01960298 -0.00200822 0.00388503 0.00675015
2 -0.02385886 0.00801634 0.01636670 -0.00930704 0.00043773
3 0.00879902 -0.00272271 -0.01136637 0.00844499 -0.00131519
4 -0.01368545 0.00462536 0.00704675 -0.00545947 0.00016474

Table 5:
(
IDHT − 1

4

)
f (x)− IPBI f (x) for a square patch

m/n 0 1 2 3 4
0 -0.00002133 0.00000658 -0.00002493 0.00000451 -0.00001115
1 0.00000727 0.00000351 0.00001043 0.00003489 0.00003693
2 0.00002165 -0.00001143 0.00001480 0.00001013 0.00001507
3 -0.00001441 0.00005238 0.00001208 -0.00005119 0.00002013
4 0.00002819 0.00001906 -0.00005492 -0.00001065 -0.00003744
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5.2.2 Ogive patch

Tables 6 and 7 give
(
IDHT − 1

4

)
f (x) and Tables 8 and 9 give IPBI f (x)

on an ogive patch at x = (0.25, 0.35). Table 10 gives the difference between(
IDHT − 1

4

)
f (x) (from Table 7) and IPBI f (x) (from Table 9).

Table 6:
(
IDHT − 1

4

)
f (x) for an ogive patch (digits=10 and order=8)

m/n 0 1 2 3 4
0 -0.10497214 0.01531734 -0.00434583 0.00114802 -0.01055496
1 0.02877761 -0.00922837 -0.00005219 0.00023867 0.00550509
2 -0.01299734 0.00165363 0.01443126 -0.00469695 -0.00057568
3 0.00033876 0.00098081 -0.00769284 0.00398050 -0.00029916
4 -0.01035685 0.00215251 0.00574442 -0.00231159 -0.00099865

Table 7:
(
IDHT − 1

4

)
f (x) for an ogive patch (digits=10 and order=10)

m/n 0 1 2 3 4
0 -0.10496593 0.01530208 -0.00434915 0.00108919 -0.01056134
1 0.02877142 -0.00924484 -0.00001177 0.00045047 0.00550813
2 -0.01300874 0.00168139 0.01440599 -0.00460083 -0.00046958
3 0.00032182 0.00092830 -0.00763120 0.00357058 -0.00050284
4 -0.01027579 0.00219966 0.00561910 -0.00213368 -0.00077999

Table 8: IPBI f (x) for an ogive patch (digits=6)
m/n 0 1 2 3 4

0 -0.10469727 0.01519943 -0.00457952 0.00114313 -0.01047368
1 0.02852133 -0.00909148 0.00027490 0.00028032 0.00536309
2 -0.01319548 0.00178295 0.01468790 -0.00468231 -0.00059081
3 0.00047419 0.00080978 -0.00791684 0.00375302 -0.00029897
4 -0.01027494 0.00217714 0.00564040 -0.00215186 -0.00082333
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Table 9: IPBI f (x) for an ogive patch (digits=8)
m/n 0 1 2 3 4

0 -0.10469748 0.01519944 -0.00457999 0.00114316 -0.01047425
1 0.02852126 -0.00909165 0.00027474 0.00028003 0.00536283
2 -0.01319595 0.00178299 0.01468690 -0.00468222 -0.00059207
3 0.00047410 0.00080952 -0.00791710 0.00375258 -0.00029937
4 -0.01027553 0.00217723 0.00563913 -0.00215167 -0.00082491

Table 10:
(
IDHT − 1

4

)
f (x)− IPBI f (x) for an ogive patch

m/n 0 1 2 3 4
0 -0.00026845 0.00010264 0.00023084 -0.00005397 -0.00008709
1 0.00025016 -0.00015319 -0.00028651 0.00017044 0.00014530
2 0.00018721 -0.00010160 -0.00028091 0.00008139 0.00012249
3 -0.00015228 0.00011878 0.00028590 -0.00018200 -0.00020347
4 -0.00000026 0.00002243 -0.00002003 0.00001799 0.00004492
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5.3 Discussion

As the ‘digits’ parameter increases, the computed value of IPBI f (x) con-
verges for each scalar function. Likewise, as the ‘order’ parameter increases,
the computed value of IDHT f (x) converges for each scalar function.

The computed values of IPBI f (x) generally show faster convergence
than those of IDHT f (x), which is a direct consequence of the fact that
we are using a two stage approach to computing IDHT f (x), rather than
the all-at-once approach used to compute IPBI f (x). If we were to com-
pute IDHT f (x) using double adaptive integration, as we do to compute
IPBI f (x), the convergence rate would be similar.

In any case,
(
IDHT − 1

4

)
f (x) and IPBI f (x) converge to approximately

the same value for each patch. Table 5 shows that for the square patch the
difference is less than 6×10−5 for all 25 scalar functions and Table 10 shows
that for the ogive patch the difference is less than 3× 10−4 for all 25 scalar
functions.

Although this does not constitute a proof that the 2d PBI identity is
correct, it does demonstrate that it is feasible to numerically evaluate all the
integrals in the identity and it provides numerical support for the validity
of the identity.

6 Analytic preconditioner (APEFIE) for closed sur-
face PEC targets

6.1 3d scalar

In the process of numerically validating the 2d PBI we came to the realization
that, while the 2d PBI affords the advantage of achieving an explicitly second
kind integral operator, it may still be possible to construct a numerical
representation of the double Hilbert transform operator in such a way that
its desirable spectral properties are not compromised. The advantage of the
latter approach is that it is easier and less time consuming to compute the
double Hilbert transform than the PBI integral. If we could make do with
the double Hilbert transform alone, we could speed up the calculation of the
near interaction matrix elements in the analytically preconditioned EFIE
considerably.

Analytically, the double Hilbert integral behaves like a second kind op-
erator. Its spectrum consists of several distinct eigenvalues corresponding
to low frequency eigenmodes plus a collection of eigenvalues piling up at 1

4 .
The eigenvalues at 1

4 correspond to the higher frequency eigenmodes. The
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problem we previously observed was that numerical representations of this
operator did not display second kind behavior. The spectrum of the dis-
cretized double Hilbert transform consisted of lower frequency eigenvalues
that were well resolved and higher frequency ones that were not. Instead of
all the eigenvalues corresponding to higher frequency eigenmodes collecting
at 1

4 , we observed a trail of eigenvalues extending from 1
4 to the origin.

The problem had to do with the way we were discretizing the double
Hilbert transform term. The double Hilbert transform operator is the com-
position of two Hilbert transforms. If we define the individual Hilbert trans-
form operators as in (19), then the double Hilbert transform operator in
(20a) is

H12 = H1H2

In the past we had been computing the matrix representation of H12 (=
IDHT ) as the product of the matrix representations of H1 and H2. If S
represents a single patch containing N sample points, then the matrix rep-
resentation of H2 was a square matrix connecting the N source points x′′

to N intermediate field points x′; and H1 was a square matrix connecting
the N intermediate source points x′ to the N field points x. The resultant
product matrix H12 connects the N source points x′′ to the N field points
x as it should.

As part of the process of validating the 2d PBI, we computed the matrix
representation of H12 two new ways. The first way was to compute H12 ”all
at once”. In other words, we computed the outer integral term in

H12 (ψ (x)) =∫
S
ds′ φ1

(
x′

) (
n̂×∇G

(
x,x′

))
·
∫
S
ds′′ φ2

(
x′′

) (
n̂′′ ×∇′′G

(
x′,x′′

))
ψ

(
x′′

)
(21)

adaptively while also using adaptive integration to evaluate the inner integral
at each quadrature point of the outer integration. The second way is much
like the method described in the previous paragraph except that we used
M intermediate source/field points x′ in the calculation of the individual
matrix representations, where M > N . The matrix representations of H1

and H2 became complementary rectangles rather than squares. The final
result for H12 is, of course, still square.

We computed the spectrum of H12 for a sphere using all three tech-
niques. As before, we found that the original technique produced a trail of
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eigenvalues from 1
4 to the origin, which correspond to unresolved high spa-

tial frequency eigenmodes on the sphere. When we did the same calculation
using either of the two new ways this was not the case. Instead, we saw the
correct spectrum. For the all-at-once evaluation method this is as expected
– the full operator is being computed to whatever accuracy is specified so
the spectrum should be similarly accurate. However, we found that it also
worked for the matrix product method when M was only modestly larger
than N . In particular, we found that doubling the sample point density in
each surface dimension (i.e., M = 4N) was generally sufficient to recover
the correct spectral properties. This method of evaluation is generally much
faster than the all-at-once method, which, in turn, is much faster than eval-
uating the PBI integral. When M � N , results obtained using the matrix
product method should become indistinguishable from those obtained using
the all-at-once method given that both methods will be employing a large
number of intermediate sample points distributed over the surface in their
computations.

The following plot demonstrates the difference between the old and new
ways of computing the double Hilbert transform term. The plot shows
eigenvalues for the double Hilbert transform operator on an r = 0.43667λ
sphere. The red points labeled “old way” were computed using the matrix
product method with the number of intermediate points equaling the num-
ber of field/source points on each patch. The green points were computed
using the all-at-once integration method. The blue points are the analyti-
cally computed eigenvalues3 of the double Hilbert transform operator on the
sphere. The computation was performed using a low order discretization so
the red and green eigenvalues are seen to converge rather slowly to the exact
blue ones. The salient feature of the plot is the difference in the behavior
of the red and green points corresponding to high spatial frequency modes.
The red eigenvalues form a trail extending from (0.25, 0) to the origin. By
contrast, the green eigenvalues tend to accumulate near (0.25, 0), as they
should.

6.2 3d vector EM

The 3d vector EM analogs of the product operator H1H2 in (21) are the
product operators TαT T and T βTL defined in (14). Together they constitute

3The lth eigenvalue for the double Hilbert transform operator on a sphere of radius

r is −l (l + 1)
“

Jl(kr)Hl(kr)
kr

”2

, where Jl and Hl are the Riccati-Bessel and Riccati-Hankel

functions, respectively, of order l.
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Figure 1: Eigenvalues spectrum for double Hilbert transform operator on a
sphere.

the second kind part of the T 2 operator. In our original implementation of
the Analytically Preconditioned Electric Field Integral Equation (APEFIE),
we obtained a matrix representation for T 2 by separately discretizing its
component operators Tα, T T , T β, TL, and TS , multiplying them in pairs,
and adding them together. The matrix representation of each operator was
square. The numerical spectrum exhibited eigenvalues tending toward the
origin just as we saw in the scalar case because the discretized operator was
under-resolving high spatial frequency eigenmodes that the discretization
was capable of representing.

In our original implementation we overcame this problem by adding the
magnetic field equation (MFIE) to the TTIE4 to create a combined field
equation (CFIE). This not only moves the low-pass filtered eigenvalues of
T 2 away from the origin by virtue of the constant term (one half) contributed

4TTIE is an alternative abbreviation for APEFIE. The name evokes the fact that it is
based on the TT operator.
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by the MFIE, it also eliminates spurious resonances. In the present case, we
were able to solve the problem by slightly over-resolving the discretization at
intermediate points of the product operator like we did for the double Hilbert
transform operator in the scalar case. This approach has the advantage that
it can also be extended to the open surface case where adding the MFIE is
not an option.

Figures 2, 3, and 4 compare the spectrum of the TTIE computed the old
way (with the number of intermediate sample points equal to the number
of field/source points) and the new way (with the four times a many inter-
mediate sample points as field/source points). In these plots, the red points
are for the old discretization method (a standard iterative EFIE solver),
the green points are for the new discretization method (more intermediate
sample points), and the blue points are the analytical result. Of the three
targets one expects the spectral behavior of the APEFIE to be ideal only
for the sphere because its surface is smooth. By contrast, the cube has
sharp edges and corners and the ogive has pointy tips, all of which are ge-
ometric singularities. The ideal APEFIE for targets with such geometric
singularities probably incorporates complementary singularity functions in
the APEFIE operator (see discussion in the next section). Although we did
not do that, the computed spectra of the APEFIE operators for the cube
and ogive have the characteristics one desires in the ideal operator, namely
a bounded spectrum and an eigenvalue collection point well separated from
the origin.

7 Analytic preconditioner for open surface PEC
targets

The APEFIE overcomes the local causes of EFIE ill conditioning on smooth
targets for which the source distribution is also expected to be smooth and
continuous. Open surfaces are not smooth targets and one expects the source
distribution to exhibit singular behavior near an open edge. Therefore, it
should not be surprising if the ideal analytic preconditioner for open surface
PEC targets turns out to be different from the APEFIE for closed surface
PEC targets. In fact, the quest for the ideal APEFIE for open surfaces may
provide some insight into what the ideal APEFIE for closed surface targets
with geometric singularities (edges, corners, sharp tips, etc.) should look
like.

To get some insight into what the ideal APEFIE for open surface targets
should look like, it is helpful to first analyze the problem of scalar scattering
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Figure 2: Eigenvalue spectrum for the APEFIE on a PEC sphere with radius
r = 1

2λ, comparing old (red) and new (green) discretization methods.

from open surface targets in 2d and 3d. In both cases, analytical solutions
are available for scattering from simple canonical targets. The solutions are
particularly simple in the Laplace limit, which is sufficient for analyzing the
local behavior of the operators. Unfortunately, there is, as yet, no simple
analytical solution for the 3d EM vector case5.

7.1 Analytical solutions

7.1.1 2d scalar case

The 2d scalar analogs of the EFIE are (4) and (5) and the canonical open
surface target for 2d scalar scattering is a flat strip.

5There are series solutions (e.g., [12]) for scattering from a flat PEC disc but they are
quite complicated and do not offer immediate insight into the modes of the EFIE operator
on the disc.
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Figure 3: Eigenvalue spectrum for the APEFIE on a cube with 1λ sides,
comparing old (red) and new (green) discretization methods.

Dirichlet boundary conditions

First consider (4), which is the appropriate integral equation for 2d scalar
scattering from the curve C under Dirichlet boundary conditions (ψ = 0 on
C) or, equivalently, TM-polarized 3d vector EM scattering from the infinite
cylinder with cross section C. Preconditioning (4) by the hypersingular
kernel integral operator from (5) followed by an arbitrary scalar function
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Figure 4: Eigenvalue spectrum for the APEFIE on a PEC ogive with tip-to-
tip length l = 10λ and center radius r = 1λ, comparing old (red) and new
(green) discretization methods.
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where we have also made use of the 2d identity [13]

∂
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Using integration by parts we can replace the last term on the far RHS of
(22) by

− d

dl
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(24)

Let us specify C to be the interval from −1 to 1 and let the Green func-
tion be the 2d Laplace kernel given in (3). For later notational convenience,
we will also pull an arbitrary scalar function φ2 (x′′) out of dψ(x′′)

dn′′ , i.e., re-
place dψ(x′′)

dn′′ by φ2 (x′′) ξ (x′′). Then the first term on the far RHS of (24)
becomes

1
(2π)2

−
∫ 1

−1
dx′

φ1 (x′)
x− x′

−
∫ 1

−1
dx′′

φ2 (x′′)
x′ − x′′

ξ
(
x′′

)
(25)

which, apart from the constant prefactor, is identical to the LHS of (1).
At this point it is worthwhile to make note of the following standard

identities ((22.13.4) and (22.13.3) in [14]):

−
∫ 1

−1
dx′

1
x− x′

√
1− x′2Un−1

(
x′

)
= πTn (x) (26)

−
∫ 1

−1
dx′

1
x− x′

1√
1− x′2

Tn
(
x′

)
= −πUn−1 (x) (27)

where Tn and Un represent the nth Chebyshev polynomials of the first and
second kind, respectively, and n = 1, 2, . . ..

If we define

φ1 (x) ≡
√

1− x2 and φ2 (x) ≡ 1/
√

1− x2 (28)

it follows that

1
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4
Tn (x) . (29)
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for n = 1, 2, 3, . . .. In other words, with this choice for φ1 and φ2, the
eigenfunctions of the operator in (25) are the Chebyshev polynomials of the
first kind and in all cases the eigenvalue is −1/4.

Notes:

• Any smooth function defined on the interval [−1 : 1] can be expressed
as a linear combination of first kind Chebyshev polynomials;

• The product of φ2 (x) with any linear combination of first kind Cheby-
shev polynomials will have 1/

√
1∓ x singularities at the endpoints ±1

and be regular in the interior of the interval, which matches the end-
point behavior one expects for solutions to (5);

• φ1 (x) vanishes at the endpoints.

• The identity for Un (x) corresponding to (29),

1
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(
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)
= −1

4
Un (x) , (30)

applies for n = 0, 1, 2 . . .. Note the reversed order of the endpoint
singularity functions.

• Equations (29) and (30) are special cases of (1) for which the last term
on the RHS of (1) evaluates to zero.

Since there is a smooth mapping from the interval [−1 : 1] to any smooth
curve C, we can deduce that the double integral operator∫
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is a second kind operator. All the other terms in our operator decomposi-
tion are compact. Since the difference between the Laplace kernel and the
Helmholtz kernel is a regular function, this result also holds for the integral
operators associated with 2d scattering. Therefore, in the general case, one
could write a second kind integration equation for open surface Dirichlet
scattering as
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, (32)
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where φ1 and φ2 are complementary endpoint singularity functions like those
in (28) and the solution is given by dψ(x′′)

dn′′ = φ2 (x′′) ξ (x′′). The eigenvalues
for high spatial frequency eigenmodes of the double integral operator on the
RHS of (32) will accumulate at −1/4.

Note:

• If the curve C was the unit circle (a closed surface) instead of the
unit interval (an open surface), a similar analysis results in the same
conclusion for Eq. (32). The only difference is that the functions φ1

and φ2 both equal one. The same analysis is extensible to the case
where C is any smooth closed curve.

Neumann boundary conditions

A similar result obtains for 2d scalar scattering from the curve C under Neu-
mann boundary conditions (∂nψ = 0 on C) or, equivalently, TE-polarized
3d vector EM scattering from the infinite cylinder with cross section C. In
this case, however, it is more convenient to make use of a postcondition-
ing operator that contains the complementary kernel singularity and the
complementary singularity factor6.

It works like this. Assume that we can write ψ as

ψ
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)
ξ
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)
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for some functions φ1 (x′) and ξ (x′′), in which case we can rewrite (5) as

−dψ
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)
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(34)

After applying (23) and using integration by parts as before, we can
6Preconditioning by the same operator would also result in a second kind operator for

ψ. However, one cannot manipulate it into a sum of compact operators and a double
Hilbert transform operator because the integration by parts procedure produces a term

whose integrand is proportional to
dφ2(x′)

dx′ ∼
`
1− x′2

´−3/2
, which is not an integrable

endpoint singularity.
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rewrite the RHS of (34) as∫
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(35)

Following the same arguments as in the Dirichlet case we find that the
first term in (35) is second kind with respect to ξ whereas the other terms
are compact operators or zero. Therefore (34) is a second kind integral
equation for open surface Neumann scattering. Having obtained a solution
for ξ, the solution for ψ follows immediately from (33).

7.1.2 3d scalar case

The equations describing scalar wave scattering under Dirichlet and Neu-
mann boundary conditions in 3d are the same as (4) and (5) except that the
integrals over curve C must be replaced by integrals over surface S. The
canonical open surface target for 3d scattering is a flat circular disc.

The analytical preconditioning procedure is similar to what we did in
the 2d scalar case, i.e., pre- or postcondition each integral equation by an
integral operator that includes the complementary kernel singularity and the
edge singularity factor that is complementary to the expected source term
edge singularity. The rest of the procedure follows much the same path as
before. The important differences are in the details of the second kind term,
which we can analyze in the Laplace limit for the specific case where S is
the unit disc.

Oblate spheroidal coordinates are ideal for analyzing the disc problem
because the 3d scalar Helmholtz and Laplace equations are separable in this
coordinate system {ξ, η, ϕ} and the degenerate (ξ → 0) limit of an oblate
spheroid is a flat disc. Two views of the oblate coordinate system on a disc
are shown in Fig. 5. The two oblate spheroidal coordinates that describe a
disc are ϕ and η. The ϕ coordinate is the usual azimuthal coordinate. On a
disc of radius a, the η coordinate is related to the radius by r = a

(
1− η2

)1/2.
Note:
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Figure 5: Oblate spheroidal coordinate system

• Since η =
(
1− (r/a)2

)1/2
, one expects solutions to the Dirichlet prob-

lem to scale like 1/η near the edge of the disc and solutions to the Neu-
mann problem to scale like η near the edge of the disc. In other words,
η and 1/η can serve as complementary edge singularity functions.

• As η runs from −1 to 0 to +1, the location on the disc runs from the
underside center, to the edge, to the topside center.

Solutions to the Laplace equation on the disc are linear combinations of
modes of the form

ψlm (η, ϕ) ≡ Pml (η) eimϕ (36)

where Pml (η) is the associated Legendre function of order (l,m). The func-
tion Pml (η) is an even (odd) polynomial in η times rm for l+m even (odd).

Solutions to the Helmholtz equation with wavenumber k on the disc are
linear combinations of modes of the form

ψlm (η, ϕ; γ) ≡ Sml (η, γ) eimϕ (37)

where Sml (η, γ) is the oblate spheroidal wavefunctions of order (l,m) and
dimensionless scale size γ = ka. Unlike the associated Legendre functions,
the oblate spheroidal wavefunctions do not have a simple closed form. Nor
do they obey most of the simple identities that the associated Legendre
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polynomials obey (see 8.73-8.74 of [15]). In the low frequency limit, they
reduce to associated Legendre functions, i.e.,

Sml (η, γ) → Pml (η) as γ → 0.

The key ingredients for the analysis are:

• Angular orthogonality:

2π∫
0

dϕ ei(m−m
′)ϕ = 2πδm,m′

• Radial orthogonality ((7.112.1) of [15]):

1∫
−1

dη P
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l (η)P |m|
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• Differential area element:

dA = a2 |η| dη dϕ

(Note that a2

2π∫
0

dϕ

1∫
−1

|η| dη covers the disc twice – once over the top

side and once over the bottom side.)

• Laplace Green function expansion (derived from (10.3.63) of [16]) in
terms of Laplace modes

(
P
|m|
l (η) eimϕ

)
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G
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)
=
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(38)

where a is the radius of the disc and

clm ≡ 2
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(
l+m+2

2

)
Γ
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)
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)
Γ

(
l−m+1

2

) . (39)

31



With these relations we obtained the following analytical results7 when
S is disc of radius a and G is the Laplace kernel:

• First kind and hypersingular integral operators including edge singu-
larity factors:∫

S
ds′ G

(
x,x′

) 1
η′
ψlm

(
η′, ϕ′

)
=

a

2clm
ψlm (η, ϕ) for l+m even (40)

and

d

dn

∫
S
ds′

∂G (x,x′)
∂n′

η′
(
ψlm (η′, ϕ′)

η′

)
=
clm
2a

ψlm (η, ϕ)
η

for l+m odd

(41)

where ψlm (η, ϕ) is the scalar Laplace mode as defined in (36). Note
that ψlm (η, ϕ) is an even (odd) function of η if l+m is even (odd), so
ψlm (η, ϕ) in (40) with l +m is even, and ψlm(η,ϕ)

η in (41) with l +m
is odd, are both regular functions on the whole of the disc (i.e., for
−1 ≤ η ≤ 1 and 0 ≤ ϕ ≤ 2π) and even functions of η.

• Combinations of first kind and hypersingular integral operators includ-
ing edge singularity factors:
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−
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)
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βl
′
lm
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η

for l +m odd (43)

where αl
′
lm and βl

′
lm are (unspecified) constant coefficients.

7As far as we know, these identities are novel results.
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• The integral operator in (42) does not mix m’s. For a given (l,m) with
l+m even, the eigenfunctions of this operator are linear combinations
of ψl′m (η, ϕ) with l′ = l, l − 2, , . . .m . The eigenvalue corresponding
to the (l,m)th eigenfunction is

−1
4

(l + 1)2 −m2

c2lm
. (44)

Likewise, the integral operator in (43) does not mix m’s. For a given
(l,m) with l + m odd, the eigenfunctions of this operator are linear
combinations of ψl′m(η,ϕ)

η with l′ = l, l − 2, , . . .m+ 1. The eigenvalue

corresponding to the (l,m)th eigenfunction is

−1
4

c2lm
l2 −m2

. (45)

• Combinations of Hilbert-transform-like integral operators including
edge singularity factors:∫

S
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(
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)
· η′

∫
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η
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(47)

Dirichlet boundary conditions

The integral equation appropriate to Dirichlet boundary conditions is (4)
with curve C replaced by surface S. Preconditioning both sides of this
equation by the surface form of the hypersingular integral operator from (5)
followed by an arbitrary surface function φ1 (x′) gives the surface analog to
(22), namely

− d

dn
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)
, (48)
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where we have substituted φ2 (x′′) ξ (x′′) for dψ(x′′)
dn′′ . Letting φ1 (x′) = η′

and φ2 (x′′) = 1/η′′ puts the RHS of (48) into the same form as the integral
operator in (42). The eigenfunctions of this operator are regular functions
of position on the disc. The added factor of φ2 (x′′) = 1/η′′ gives them
the correct edge singularity behavior for scalar solutions to the Laplace or
Helmholtz problem on the disc under Dirichlet boundary conditions. The
eigenvalues of the integral operator in (48) in the Laplace limit can be de-
duced from (44).

Alternatively, one can take (48) a step further, using the identity [13]

∂
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)
k2G
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)
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(
n̂′ ×∇′)G (

x,x′
)

(49)

and performing an integration by parts as was done in the 2d scalar case.
The resulting RHS is the sum of a compact operator and the term8

∫
S
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(
n̂×∇G

(
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·φ1

(
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) ∫
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(
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(
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(
x′′

)
ξ
(
x′′

)
(50)

where φ1 (x′), φ2 (x′′), and ξ (x′′) are defined as before. The eigenfunctions
and corresponding eigenvalues of this operator in the Laplace limit are given
by (46).

Neumann boundary conditions

A similar result obtains for Neumann boundary conditions. There are two
ways to go about it. One can either precondition the integral equation ap-
propriate to Neumann boundary conditions by the integral operator from
the Dirichlet problem or use the post-conditioner approach described previ-
ously for 2d scalar scattering under Neumann boundary conditions.

In the first case, the integral operator consists of a compact term and a
term of the form

−
∫
S
ds′ G

(
x,x′

)
φ2

(
x′

) d

dn′

∫
S
ds′′

∂G (x′,x′′)
∂n′′

φ1

(
x′′

)
ξ
(
x′′

)
(51)

where ψ (x′′) has been replaced by φ1 (x′′) ξ (x′′). Letting φ1 (x′′) = η′′ and
φ2 (x′) = 1/η′ puts (51) into the same form as the operator in (42), whose
eigenvalues (in the Laplace limit) are given by (45). In the second case, the

8This operator in differs from the double Hilbert transform operator −H12 defined in
(21) by at most a compact operator.
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integral operator consists of a compact term and a term identical to that
of (50), where φ1 (x′) and φ2 (x′′) are defined as above. In both cases, the
added factor of φ1 (x′′) = η′′ in the expression for the solution guarantees
that it exhibits the correct edge singularity behavior for the solutions under
Neumann boundary conditions.

Second kind character of the eigenvalue spectrum

Figure 6: Spectrum of the 3d scalar double integral operator in (42) in the
Laplace limit; i.e., a plot of the eigenvalues given in (44).

The eigenvalue spectrum in the 3d scalar case is not as simple as it was in
the 2d scalar case wherein the eigenvalue associated with every eigenfunction
was −1

4 . In the 3d scalar case, it depends on l and m. For example, Figure
6 is a plot of the Dirichlet eigenvalues9 in the Laplace limit for 0 ≤ m ≤ l

9By virtue of the identity (l+1)2−m2

c2
lm

=
c2l+1,m

(l+1)2−m2 , the eigenvalue spectrum for the

Neumann case as a function of l+1 is the same as the Dirichlet spectrum as a function of
l., i.e. the Neumann counterpart to Figure 6 would look the same except that all points
would be shifted rightward by one unit. The spectrum of (50) is the same as the Dirchlet
spectrum shown in Figure 6.
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up to l = 50. In the high spatial frequency limit (l → ∞), the eigenvalues
asymptotically approach collection points whose values depend on l − m.
The number of collection points is infinite, but they all fall into the range
from −π

8 ' −0.393 to −1
4 . Obviously, this does not conform to the classic

definition of a second kind spectrum because the eigenvalues do not tend to
accumulate at a single point. It is more like a sum of second kind operators
all of whose eigenvalue collection points are between −π

8 and −1
4 . The

important point for our purposes is that the spectrum is bounded and all
the eigenvalues stay well away from the origin in the high spatial frequency
limit.

The corresponding spectrum for the Helmholtz case will be different from
that shown above, especially for l . ka. However, the high spatial frequency
(l → ∞) behavior of the modes in the Helmholtz case is the same as that
in the Laplace case so the above conclusions regarding the limiting behavior
of the eigenvalues and the second kind nature of the operator apply equally
well to 3d scalar scattering.

7.1.3 3d vector EM case

Preconditioning the 3d EM vector case is more complicated than either of
the previous scalar cases because the EFIE operator has both Dirichlet and
Neumann characteristics. The TS component of T behaves like the Dirichlet
operator in (4) and the TH component of T behaves like the Neumann
operator in (5). The vector source distribution also contains both Dirichlet
and Neumann characteristics. Near an open edge, the component of the
current parallel to the edge obeys J‖ ∝ δ−1/2 like the Neumann source
distribution and the component of the current perpendicular to the edge
obeys J⊥ ∝ δ1/2 like the Dirichlet source distribution, where δ is the distance
to the edge.

We know how to analytically precondition the integral equations for 3d
scalar scattering under Neumann or Dirichlet boundary conditions, so we
might expect some combination of these approaches should work in the 3d
EM vector case. However, it is not obvious how to do this given the way the
EFIE ties them together. Even so, we can make some educated guesses.

Informed by the 1d and 2d PBI and the ideal analytic preconditioners
for 2d and 3d scalar open surface scattering, we expect that the ideal an-
alytic preconditioner for 3d vector EM open surface scattering should look
something like this

“T 2”J =
(
TS + TH

)
φ1

(
TS + TH

)
φ2J (52)
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where φ1 and φ2 are complementary edge singularity functions [and φ2J is
the source distribution including edge singularity behavior].

We evaluated two versions of “T 2”J for open surfaces – one in which φ1 =
1 and another in which φ1 contained the complementary edge singularity to
φ2. In both cases, we enforced the correct edge singularity behavior on
the currents by incorporating it into the discretization. For a Nyström
discretization such as ours, this is done by locating sample points according
to a quadrature rule that is high order for integrating the appropriate set
of singular functions. For example, on quadrilateral patches with one open
edge, we can create a suitable 2d quadrature rule from the tensor product
of 1d quadrature rules, one of which is a regular rule (e.g., Gauss-Legendre)
and the other is a rule for integrating polynomials times a weighting function
with a δ−1/2 singularity at one end of the interval (e.g., Gauss-Jacobi). One
can generate other tensor product rules for cases where more than one edge
touches an open surface10. We have used these rules for the past several
years in our general purpose RCS code (FastScatTM) to achieve high order
convergence on open surface scattering problems with the EFIE.

We evaluated the properties of the APEFIE operator in (52) on several
simple open surfaces, two of which are discussed below. In our numerical
experiments the two versions of “T 2”J behaved similarly.

Triangle-circle target

The triangle-circle (or EMCC wedge-cylinder-plate) target is composed of
an equilateral triangle attached to a semicircle. Our seven quadrilateral,
handmade mesh11 is shown in Fig. 7. The discretization of each outer
quadrilateral patches is based on a product rule with one singular edge; the
discretization for the center quadrilateral is based on a tensor product of
regular quadratures. The total (one-sided) surface area is 3.31λ2.

Figs. 8 and 9 show the eigenvalue spectra for the open surface specific
APEFIE given in (52) and the standard EFIE in (8), for independent dis-
cretization densities ranging from 20.6 unknowns/λ to 26.7 unknowns/λ. A

10When two adjacent edges of a quadrilateral touch open edges the actual geometry
includes a corner. We do not know of a high order expansion for the currents at a
corner and our product rule quadratures are unlikely to be ideal. However, our experience
shows that a tensor product of δ±1/2 quadratures performs much better than low order
quadrature rules.

11This mesh exemplifies one of the differences between our Nyström discretization and
a typical Galerkin discretization. Being patch based rather than edge based, a Nyström
discretization allows for a vertex in the middle of an edge.
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Figure 7: Triangle-circle mesh.

blue dot on top of a green dot on top of a red dot indicates an eigenvalue of
a fully resolved eigenmode.

Several features are noteworthy. The eigenvalues of the APEFIE are
confined to a relatively small region on the negative real half of the com-
plex plane and tend to cluster about a few points. With few exceptions12,
the eigenvalues have converged. The smallest eigenvalues are still well sep-
arated from the origin. By contrast, the EFIE spectrum is spread over a
wider region centered about the origin on both halves of the complex plane
and is expanding with discretization refinement. The APEFIE spectrum is
consistent with a well conditioned operator, the EFIE spectrum is not.

This interpretation is borne out by the iterative solver convergence re-
sults shown in Figs. 10 and 11 and summarized in Table 11. The first
plot shows residual error vs. iteration count for the transpose-free quasi-
minimum residual (TFQMR) iterative solver. The second plot shows the
same information for the multiple-RHS generalized minimum residual (MGCR)
solver. Note that axes scaling is log - log. In all cases we attempted to solve
for the RCS in both polarizations over the azimuthal range from 0◦ to 180◦

in 1◦ steps at 10◦ elevation. A block diagonal preconditioner based on a
block size of ∼1

2λ was used with the EFIE to accelerate iterative solver
convergence.

12The curved tail of unresolved eigenvalues may be connected with the fact that, al-
though our discretization is high order for integrating currents in the interior of the patch
and near smooth portions of the edge, it is not high order near corners.
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Figure 8: Open surface APEFIE spectrum for triangle-circle target.

The differences in iterative solver convergence for the analytically precon-
ditioned EFIE and the block diagonally preconditioned EFIE are dramatic.
The APEFIE consistently converged to a residual error of 10−5 in about 30
iterations with the TFQMR and CGS solvers. The EFIE obtained a solu-
tion for the first set of excitations in about 50K iterations and was unable
to reach the termination condition on the second pass.

The EFIE fared somewhat better with the MGCR solver and the APE-
FIE fared somewhat worse, but the APEFIE was still almost a factor of 10
faster to converge.

TTIE EFIE
TFQMR ∼30 ∼60000

CGS ∼30 ∼50000
MGCR ∼200 ∼1500

Table 11: Number of iterations to convergence.
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Figure 9: Standard EFIE spectrum for triangle circle target.

RCS results from the APEFIE and EFIE for an H-polarized incident field
are compared to the EMCC measurement results in Figs. 12 and 13. Both
methods are converging to the same results, although the APEFIE results
are slightly more accurate for any given discretization density. All RCS
results should be symmetric about 0◦ since the target is symmetric about
0◦. The EMCC measurement data is not symmetric, however, indicating
some form of measurement error. We have plotted the two halves of the
measurement data on the same 0◦−180◦ scale to provide a crude indication
of measurement accuracy.

Our implementation of the Nyström method does not enforce current
continuity between patches. Instead, current continuity is a natural con-
sequence of achieving high order convergence to a exact solution that is
continuous on a smooth surface. This is generally easier to achieve with a
second kind integral operator such as the MFIE and than with an integro-
differential operator such as the EFIE.

Current amplitudes on the circle-triangle target computed using the
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Figure 10: Iterative solver convergence on triangle-circle target using
TFQMR solver and EFIE (with a block diagonal preconditioner) and the
open surface APEFIE.

APEFIE and EFIE are shown in Figs. 14 and 15. The discretization is
the same in both cases: 1694 unknowns (basis order 11). Both current dis-
plays exhibit the expected wave pattern and current singularities near edges.
The main difference is that the boundaries between patches that are easily
visible in the EFIE case are virtually invisible when the APEFIE is used.

A Nyström discretization computes the current only at selected sample
points and we determine the currents elsewhere by fitting the sample point
data to a high order interpolation function based on the underlying quadra-
ture rule for each patch. Currents at a boundary between patches may
be extrapolated from either side. The superior continuity of the APEFIE-
computed currents at artificial boundaries is a consequence their Nyström-
sampled currents being more accurate, which, in turn, is a consequence of
the APEFIE behaving like a second kind operator.
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Figure 11: Iterative solver convergence on triangle-circle target using MGCR
solver and EFIE (with a block diagonal preconditioner) and the open surface
APEFIE.

Circular flat PEC disc target

By virtue of its symmetry and simplicity, the circular flat PEC disc is the
canonical open surface PEC target. We investigated the properties of the
APEFIE for discs of different sizes. In general, the spectral characteristics
of the APEFIE on a disc are similar to those of the APEFIE on the triangle-
circle target, in that the eigenvalues are confined to a relatively small region
on the negative real half of the complex plane and they tend to cluster about
a few points.

We were surprised, however, to find that a few of the eigenvalues converge
to the origin when the radius r obeys the condition that kr is a root of Jn,
the Bessel function of integer order n. The multiplicity of the eigenvalues
at the origin is one for n = 0 and two otherwise. For example, the second
zero of J1 is 7.0156. The spectrum of the APEFIE for a disc of radius
R = 7.0156/2π, is shown in Fig. 16. The dot at the origin represents two
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Figure 12: Triangle-circle target RCS: EMCC measurement vs. APEFIE
for three different discretizations.

converged eigenvalues.
How do we interpret these zero eigenvalues? Do they correspond to

physical resonances on the disc? That possibility is contradicted by the ob-
servation that the resonance eigenvalues are not apparent when we use the
standard EFIE. Are they spurious resonances? It is well known that solu-
tions to the EFIE for closed targets are susceptible to contamination from
spurious resonances, which correspond to solutions to the interior scattering
problem. Such solutions are also eigenmodes of the exterior EFIE operator
with zero eigenvalues. They do not contribute to the exterior field. However,
an open surface such as the disc does not have an interior. The observed
resonances seem likely to be spurious resonances of the two open surface
APEFIEs we have investigated, although we do not have a simple explana-
tion for why they exist or why they appear under the particularly simple
conditions described above.

In the hope of identifying the underlying cause of the resonance eigen-
values and perhaps modifying our APEFIE formulation to avoid them, we
attempted to find an analytical series solution to the PEC disc scattering
problem. We sought a series solution (analogous to the Mie series solution
for scattering from a sphere) in terms of eigenmodes of the APEFIE opera-
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Figure 13: Triangle-circle target RCS: EMCC measurement vs. EFIE for
three different discretizations.

tor. We generated a basis set of vector modes on the disc in terms of oblate
spheroidal wavefunctions, namely

χlm (η, ϕ; γ) ≡ n̂×∇ψlm (η, ϕ; γ)

υlm (η, ϕ; γ) ≡ ∇
(
η2ψlm (η, ϕ; γ)

)
where ψlm (η, ϕ; γ) is the 3d scalar Helmholtz mode defined in (37) and l+m
is odd. The χlm vector basis functions can represent surface vector fields
with no surface divergence whose azimuthal (radial) component scales like
η−1 (η) near the edge. The υlm vector basis functions can represent surface
vector fields with no surface curl whose radial (azimuthal) component scales
like η (η3) near the edge. The 3d vector Helmholtz equation is not separable
in spheroidal coordinates, so it is not obvious what the best choice of vector
basis set is.

We derived a set of conditions for the series solution coefficients in terms
of some generic 1d integrals of products of oblate spheroidal wavefunctions
that one can evaluate numerically for any given value of the dimensionless
scale size γ.

Late in the program, we realized that it would be possible to analyti-
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Figure 14: Current distribution on triangle-circle target computed using
APEFIE.

cally determine whether or not our APEFIE was a second kind operator by
analyzing its behavior in the k → 0 limit where the oblate spheroidal wave-
functions reduce to analytically-expressible associated Legendre functions.
The keys to achieving second kind behavior are the terms

1
η

∫
S
ds′ n̂×∇G

(
x,x′

)
η′

∫
S
ds′′ n̂′×∇′G

(
x′,x′′

)
·n̂′′×∇′′ψlm

(
η′′, ϕ′′; γ

)
(53)

and

η n̂×
∫
S
ds′ n̂′×∇′G

(
x,x′

) 1
η′

∫
S
ds′′ ∇′G

(
x′,x′′

)
·∇′′ (η′′2ψlm (

η′′, ϕ′′; γ
))
.

(54)

Using Mathematica, we were able to analytically evaluate expressions
(53) and (54) for

ψlm
(
η′′, ϕ′′; γ = 0

)
≡ Pml (η) eimϕ

with l + m odd. We found that for m = 0 , the spectra of both operators
are second kind with an asymptotic eigenvalue collection point at −1

4 . For
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Figure 15: Current distribution on triangle-circle target computed using
EFIE.

all other values of m, however, the range of each operator was bigger than
the domain, so it was not a closed system and we were not able to construct
eigenfunctions with our basis set.

Nonetheless, we did investigate a modification to the APEFIE that
showed some promise for eliminating resonance eigenvalues. Not only must
the tangential component of the electric field vanish on the surface of a
PEC, so also must the normal component of the magnetic field. Therefore,
the source distribution must obey the following constraint on the normal
component of the magnetic field:

n̂ ·Hinc = −n̂ ·Hscat = −n̂ ·
∫
S
ds′ ∇G

(
x,x′

)
× J

(
x′

)
. (55)

At any given source point, the APEFIE applies two constraints on the two
components (one for each surface direction) of the source distribution. Eq.
(55) places an additional constraint on the two source components. One
could solve the over-constrained system of equations described by the APE-
FIE and (55) (i.e., three constraints, two unknowns) or solve the evenly
determined system of equations formed by adding (55) to one or both of the
APEFIE component equations (i.e., two constraints, two unknowns). We
investigated the latter approach.
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Figure 16: Eigenvalues spectrum for APEFIE on a PEC disc with a “reso-
nant” radius.

The spectrum of the resultant equation is shown in Fig. 17. Adding
the normal magnetic field constraint has the salutary effect of shifting the
resonance eigenvalues away from the origin. However, it also results in a
more widely dispersed spectrum, which is likely to have a deleterious effect
on the iterative converge rate. Nonetheless, this version of the APEFIE
represents a major improvement over the conventional EFIE in terms of
condition number and iterative solver reliability.

8 Discussion

Although we seem not to have found the ideal analytic preconditioner for the
EFIE on open surface PEC targets, we have found one that is practical to
implement numerically and that drastically improves the condition number
of the linear system. A few of the practical implications and applications of
this achievement are discussed below.
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Figure 17: Eigenvalue spectrum of APEFIE + constraint on the normal
component of the magnetic field.

8.1 Implications

• Discretization independence. Although our implementation is based on
a Nyström discretization, it could equally well have been done using a
different discretization, such as Galerkin.

• Time savings. The purpose of this program is to investigate ana-
lytic preconditioners for open surface PEC targets and demonstrate
on small test targets how an APEFIE improves iterative solver per-
formance as a consequence of regulating the operator (i.e., improving
its condition number). The real domain of practical applicability of
an APEFIE is on large targets for which iterative solvers in conjunc-
tion with fast methods are a practical necessity and the time spent in
the iterative solver phase dominates the overall solution time. Many
targets of practical interest fall into this category.

• Near field accuracy improvements. Currents computed using the EFIE
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usually show the most visible discontinuities at patch boundaries even
under conditions where the far field has converged to high accuracy.
The underlying reason is that the EFIE operator is hypersingular.
The APEFIE, being based on a second kind operator, generally pro-
duces noticeably smoother surface currents. Smoother currents should
improve the accuracy of derived near field quantities such as port
impedances.

• Dual surface method applied to the EFIE. The dual surface integral
equation method [11] is a straightforward, general technique for elim-
inating spurious resonances in closed surface scattering problems. It
does so by adding a term derived from a particular compact operator
to the original equation. There was no particular benefit in using this
method with the EFIE because the resulting equation would still be ill
conditioned. However, it does make sense with the APEFIE because
the APEFIE is well conditioned and it stays that way even after the
dual surface component is added on. Thus a dual surface APEFIE
is worth considering as an alternative to the CFIE on closed surface
PEC targets.

8.2 Applications

• EM scattering calculations. The APEFIE is useful for solving scat-
tering problems involving both open and closed PEC targets, but is
especially valuable on large open surface targets due to the lack of
practical alternatives.

• Quasi-static EM analysis. Since the APEFIE is well conditioned from
high frequencies down to DC, it could be used to analyze quasi-static
EM problems (such as motors) for which the EFIE is not a good anal-
ysis tool because of ill conditioning.

• Scalar/acoustic scattering. It is obvious from the analysis of the flat
circular disc in Section 7.1.2 how to construct an ideal analytic pre-
conditioner for scalar scattering from an open surface target under
Dirichlet or Neumann boundary conditions. One could solve large,
open surface acoustic scattering problems involving acoustically hard
or soft surfaces this way.
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8.3 Conclusions

A long-standing problem with the integral equation approach to modeling
very thin metal structures in the frequency domain is that the choice of
integral equation is limited to the inherently ill conditioned EFIE. For large
scattering problems, one would like to be able to speed up the calculation
by using iterative solvers in conjunction with fast solver methods (such as
the FMM), but the requirement to use the EFIE makes this impractical in
many cases. The general purpose matrix preconditioners that have been
applied to address this problem operate with varying degrees of reliability
and computational efficiency.

The ideal solution would be an inherently well conditioned, second kind
integral equation suitable for use on open surface PEC targets. The analytic
preconditioner developed and investigated under this program comes very
close to attaining this goal. Depending on your point of view, we have
either found a well tuned preconditioning operator for the EFIE or a new,
well conditioned integral equation to augment the EFIE.

We implemented an analytically preconditioned EFIE (APEFIE) that
stabilized and dramatically improved iterative solver performance as com-
pared to conventional numerical preconditioning methods when applied to
simple test targets. For example, the number of iterations required to
achieve solution convergence on the EMCC triangle-circle target fell from
∼50000 for the standard EFIE with a conventional block diagonal precon-
ditioner to ∼30 with the APEFIE. Similar results were obtained on other
small open surface test targets. The most significant benefits in terms of
computational savings will be observed when an fast method version of the
APEFIE is applied to large open surface targets.

The underlying reason for the iterative solver performance improvement
can be found in the eigenvalue spectrum of the integral operator. The APE-
FIE has a second kind spectrum, with eigenvalues corresponding to high
spatial frequency eigenmodes tending to cluster about a few collection points
well separated from the origin. At the origination of this program we sus-
pected that it would be a nontrivial task to actually achieve such a spectrum
in a numerical implementation and we proposed to use a 2d version of the
Poincaré-Bertrand identity (PBI) to make this task easier. Early on we nu-
merically validated the 2d PBI, but as the program progressed, we found
an alternative, less cumbersome means to achieve the same objective so we
abandoned the 2d PBI approach.

Our investigation showed that under some circumstances the APEFIE
spectrum can include a small number of zero eigenvalues, which are reminis-
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cent of the spurious resonances known to plague the EFIE for closed surface
PEC targets. To understand this problem we attempted to obtain an an-
alytical solution for the spectrum of the APEFIE on the canonical open
surface target, a circular disc. We made some progress in this direction (as
reported here), but in the end, did not fully realize this goal or arrive at a
satisfactory understanding of the reason for the zeros in the spectrum. One
hopes that a more complete analysis will bring forth an even better APEFIE
for which these zero eigenvalues do not exist.
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List of Acronyms

EFIE Electric Field Integral Equation
MFIE Magnetic Field Integral Equation

APEFIE Analytically Preconditioned Electric Field Integral Equation
TTIE T-squared Integral Equation (synonymous to APEFIE)
FMM Fast Multipole Method

EMCC Electromagnetic Code Consortium
PBI Pointcaré-Bertrand Identity
RCS Radar Cross-Section
PEC Perfect Electrical Conductor
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